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By A. J. Eggers, Jr.
SUMMARY

A procedure for calculating three-dimensional steady and nonsteady
supersonic flows wilth the method of characteristics is developed and dis-
cussed. The flow is agsumed to be adiasbatic and inviscid, although it
may be rotational and the gas may exhibit both thermsl and caloric imper-
fections. The latter features of generality are retained in the analysis
since i1t is known that the phenomena associated therewith may signifi-
cantly influence flows at high supersonic airspeeds. A further study of
the compatibility equations holding along characteristic lines reveals
that at Mach numbers sufficiently large compared to 1, flow in the oscu-
lating planes of streamlines mey, in regions free of shock waves, often
be of the generalized Prandtl-Meyer type. Surface streamlines may, under
such circumstances, be approximated by geodesics. These results hold for
nonsteady as well as steady flow, provided only slender shapes are con-
sidered, and provided the induced curvature of the flow assoclated with
the nonsteady motions does not exceed in order of magnitude the total
curvature of the flow. Steady two-dimensional-flow equations may thus
be appliceble to g wider class of flows, and hence shapes, at high super-
sonic speeds than was heretofore thought.

INTRODUCTION

The calculation of flows about objects, primarily missiles, travel-
ing at high supersonic speeds is now generally accepted as a matter of
more than academic interest. The difficulty of these calculations stems
in large part from the fact that at such high speeds disturbance veloc-
ities are not necessarily smell compared to the veloeity of sound, nor
are entropy gradients necessarily negligible in the disturbed flow fleld
about a body, even though it may be of normasl slenderness. Thus, for
example, the relatively simple linear theory, which haes proven so valu-
able in studying flows at low supersonic speeds, loses much of its utility
in the study of high-supersonic-speed flows. In the gquest for methods
especially suited to calculating high-supersonic-gpeed flows, notable
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progress has been mede in the development of similarity laws releting
the flows about slender three-dimensional shapes in both steady (see
references 1, 2, and 3) and nonsteady motion (see references L and 5).
Steady two-dimengional flows have received perhaps the greatest attention
from the standpoint of calculating specific flow flelds, and it would
seem that with tools ranging from the characteristics method (see, e.g.,
references 6 and T) to the generalized shock-expansion method (refer-
ence T) the problem is reasonably well in hand, at least insofar as
inviscid, continuum flow is concerned. A more or less analogous situa-
tion exists with regard to the nonlifting body of revolution (see, e.g.,
references 6, 8, 9, and 10) although it seems that only in the case of
the cone has a method (reference 10) of simplicity comparsble to that of
the linear theory been developed for calculeting the whole fiow fleld.

When one departs from these relatively simple flows, the number of
tools for carrying out practical calculations decreaseg sharply. Thus,
for example, in the category of inclined bodies of revolution, it appears
that only bodies at small angles of attack have been handled adequately,
ususlly by either the method of characteristics or some other step-by-step
calculative procedure (see, e.g., references 6, and 11 through 14). In
the case of steady flow about general three-dimensional shapes, aside
from Newtonien flow concepts, which are strictly epplicable at Mach num-
bers exceeding ell limits, only the characteristics method has apparently
thus far received serious attention {references 15, 16, 17, and 18).
Sauer's treatment of this method (reference 18) is especilally neat,
entalling only the assumption of ideal (i.e., thermally and calorically
perfect) gas flow and ylelding compatibility equations in a relatively
simple form. Application of the method, although it would undoubtedly
prove tedious and time consuming, is, as pointed out by Sauer, certainly
feasible with the ald of present dey high-speed computing machines. It
is clear, of course, that the relatively exact solutions obtainable with
the method of characteristics provide an invaluasble check against the pre~
dictions of more approximete but perhaps simpler theories. Indeed, as
demonstrated in reference 10, a study of the compatibility equations of
the characteristics method can prove useful in determining simplified
methods for calculating more complex flow fields. h

With these pointes in mind, it is undertaken as the first principsal
objective of the present report to reconsider the characteristics method,
particular attention being given to its epplicetion to high-supersonic-
speed flows in which, ss is often the case, air does not behave as an
ideal gas. The assumption, then, of ideal gas flow is relaxed, and to
preserve insofar as is possible the element of simplicity in the method,
pressure and flow inclination angles are employed as dependent variables
(see reference T) rather than, for example, veloclty components as were
used by Sauer. Extension of the method to the study of nonsteady flows
is also considered; however, the remaining principal objective of this
paper is to show how results of the characteristlcs theory can be exploited
to deduce a simplified procedure for calculstling high-supersonic-speed
flows of both the steady and nonsteady types.
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ANALYSTS AND DISCUSSION

Compatibility relations describing the behavior of fluild properties
along characteristic lines in supersonic flow may, of course, be obtained
by proceeding formslly with the theory of characteristics for the quasi-
linesr partial differentisl equations which depict the flow. In the
interests of simplifying both the derivation of these relstions and their
resultant forms, however, it seems desirable to proceed in a more Iintuitive
manner, assuming a priori that the characteristic lines are Mach lines and
streamlines (in steady flow), and utilizing the implication from two-
dimensional-~flow studies that perhaps the most convenient dependent vari-
ables are pressure and flow inclination angles. With this approach in
mind, we employ the Euler momentum equations,

3u d ) U 1 dp
— — V — Wee—= = = 1
> + U S + . + ™ 5 3% (1)
PSR AN () AU S )
ot *yu x v oy v oz P oy (2)
M o H o H M _lop
5 Uy TV (3)
the continuity equation,
ég o(pU) o(pV) aﬁpW) = )
3t Tox oy ez ()
the equation of state,
p = p(p,s) . (5)
and the energy equation,
%, y®ELyE iy, (6)

where U, V, and W are the components of velocity at time t along
the X, ¥y, and z saxes, respectively, of an element of the fluid of
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densgity p, static pressure ©p, and entropy gt (see appendix for list
of symbols). To put these expressions in a more tracteble form, it is
convenient to aline the x axis at time t with the direction of the
resultant veloclty at the origin of the coordinate system. Thus equa-
tions (1) through (4) and equation (6) simplify, respectively, in the
region of the origin, to

U, yU,1p
st P To° (7)
FoAAR -1/ G A
g U il 5= 0 (8)
M, M, 1
3t u 3x P oz 0 o (9)
B ud,, (8,2, ).
ot +U ax'+ P\ = * oy * dz 0 (20)
and
Os o _ ;
S +U < = 0 (11)

"which reletions are basic to the subsequent analysis.
Steady Flow

Characteristics method.- It is clear that in this case all derivatives
with respeet to time disappear from the above relations. Thus, assuming
there are no shock waves present in the region of the origin,2 we may
write, with the aid of equations (5) and (11),

lFor certain caleculations it may be desirable to proceed from more gen-
eral equetions which include effects of heat and mass addition to (or
subtretion from) the flow as well as effects of impressed forces (e.g.,
gravitational or magnetic). Such a procedure may easily be developed
from that presented here by following the method of Guderley (refer-
encé 6) for two-dimensional flow.

21f shock waves are present, the appropriate obligue shock eguations are
employed.

=
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ap=l§2 | (12)
2.9

-1
s ox =&

where a 1s the local speed of sound in the fluid. Combining
equations (7), (10), and (12), there is then obtained the relation

-2 [ 1 /3v o) '

5@:_%_[_ _V+__>] (13)
0x M2-1 LU \oy Oz

or, defining A as the angle between the x axis and the tangent to the

projection of & streamline in the x - y plane, and, in an analogous
menner, the angle & in the x = z plane (see sketch), we have

Z

Projection of streamline in X —Z plane

Streamine —_-==""" :Q;-\S

o N*A

Projection of streamline in X =Y plane

% _ -pv% (3 §> 1k
dx M31 \9Jy Y (1#)

Transforming the derivatives with respect to x and z to derivatives in
the characteristic or C;, and Cpy directions in the x - z plane (Cyg
is positively inclined with respect to x, thus ()/dx = [M/(2¥/M2-1)]

[3()/3c1z + 9()/3Coy] and 3()/dz = (M/2)[3()/3Cyz - O()/Caz] ), there
results from this equatlion

3p +__§L... _____pU2 [:_ai. B _2 éé)] (15)

iz  OCop | WMEL | 3Cog  OCiz M \3y

In an analogous manner, there is obtained from equation (9) the relation

3 _ dp _ _-pU® 0% 08 16
C1z OCoy /MP-1 OC1g N ACaz (16)
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Adding these two expressions then yields

op -pU2 [ 0% + 1y 3A> ] (1
= =|{ = T
oCiz #MB-1 L 3C;; M \Oy )

while subtracting ylelds

acai; Jﬂi[ ( >J (18)

Equations (17) and (18) are compatibility equations for charateristic

or Mach lines in the x - z plane.® Indeed, if it is further required
thaet the x - z plane be the osculating plane of the streamline passing
through the origin, that is, the plane contalning the principal radius
of curvature and tangent to this streamline (at the origin), then these
equations are the esgential relations for determining pressure and flow
inelination throughout a flow field. This point becomes evident when

it 1s observed that with the imposed requirement (viz., 0A/dx = 0), the
additional information derived fram studying flow in the x - ¥y plane
is simply that deduced from equetion (8), or, as would be expected,

éB 3
Sy 0 (19)
In proceeding to comstruct a filow field, however, it is necessary to

know the manner in which the osculating plane rotates and, correspondingly,
how the principal curvature varies slong a streamline., This information
is eagily cbtained from equations (2) and (3) by differentiating with
respect to x, thus yielding

-~ (20)

and

Fp__ L3 3 1 p)® |
32~ " o 5 ) ( Ea::) o (22)

respectively.

With the aid of these and the previously derived expressions, we now
consider how the characteristics method for steady three-dimensional flows

3Tt ig noted that these expressions contain not only derlvatives in the
characteristic directions but also derivatives with respect to the

independent varisble y- This type of result is to be expected as
pointed out by Coburn. (reference 19).
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can be applied. In particular, only the initisl value problem will be
considered here. Thus it is first assumed that flow conditlons are
known, or in some manner msy be determined on a spurface® in the disturbed
flow field to be investigated. We then consider flow in the region of
the osculating plane of one of the streamlines passing through this sur-
face (see sketch below).

Z Streamline
.-Gz

Sin ~/ —;'\ = \/
M ~

. ~
/<;\—- —X ~Coz
Trace of surfoace In osculating plone

Using known conditions at points A and B, pressure and flow inclination
at C are calculated employing equations (17) and (18) as difference
equations. Orientation of the osculating plane and curvature of the
streamline at C are then determined with the aid of equations (20)
and (21) and the knowledge of x and 05/0x. Other properties, such as
velocity, temperature, and Mach number are determined &t point C in a
manner analogous to that for two-dimensional flow (see, e.g., refer-
ence T). Once these calculations have been carried out at a number of
points, like C, close to the initial surface, then the whole procedure
is repeated, progressing from these new points (or points interpolated
therefrom) of known flow conditlons to other points farther removed from
the gurface. Thus the flow field is constructed moving downstream (or
upstream) from the initial surface.

Variastions on these calculations are frequently required in practical
applicaticns; for example, if a shock wave is encountered in the construec-
tion; it is usually necessary to solve simultaneously the equations for
the shock and the compatibility equation for the characteristic line
intersecting the shock in order to determine flow conditions at a point
adjacent to the shock. With an enslogous procedure, points on the sur-
Pace of a body may be treated. In any case, it would appear that

4If no other informstion on the flow field is available, this surface
cannot, ag is known from the theory of characteristics, be a character-
istic surface. However, as is frequently the case in aerodynamics, this
restrictlion is eliminated since the initial surface intersects a shock
wave or body of known shape, or both, which result provides additional
boundary conditions at the terminal edges of the surface.
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complication of calculation has been reduced by working with pressure
and flow inclination angles as primary dependent varisbles, no loss in
generality being sustained insofar as restrictions on the thermodynamlec
behavior of the gas is concerned. The gas may exhibit both thermal and
calorie imperfections without invaelidating the previously developed
equations, the extent to which these imperfections are menifest influenc-
ing only the form of the equaetion of state of the fluid and the relations
defining its specific heats.® The provision for caloric imperfections
would appear (see reference T) to be especially desirable when using the
method to calculate hypersonic flows.

Application of the method to the calculetion of a specific flow
field hinges on the determination of flow conditions along the inltial
surface. This 1s a separate problem, the solution of which has thus far
at least been speclal to the particular type of flow under considerstion.®
Indeed, only the airfoil has apparently been treated rigorously in this
connection without the restriction that air behaves as an ideal gas (see

reference 22).

Imperfect gas flow downstream of the throat of a hypersonic nozzle
could, of course, be analyzed by the characteristics method of this
paper. With the restriction to ideal gas flows, an additional spplication
of importance also suggeste ltself, namely, to the calculation of flows
about inclined bodies of revolution at angle of attack (not necessarily
small). In this case flow conditions elong a surface close to the vertex
of the body can be calculated approximately with the aid of references 25
and 26, the accuracy of the approximation increasing with the closeness
of the surface to the vertex. Flow downstream of this surface can then
be determined after the manner discussed, using equations (17), (18),
(20), and (21) in the reduced forms

dp _ -sz2[ 38 + BA>]
A1y M2 aClz

aizz’_'??:_f‘[ ( ]

Fa_ .1 <§B _
ax=? 7pM2 x dz Ox

SSince only flows of dense alr are treated here, heat capaclty lag
effects are consldered negligible.

81n this connection see, for example, the work of Crocco (reference 20),
Munk and Prim (reference 21), and Kraus (reference 22) on the two-
dimensional airfoll problem, and Shen and Lin (reference 23) and

Cebannes (reference 24) on axielly symmetric flow sbout bodies of
revolutlon. : '
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and
8_2§=_______ |: 1 Q(Mz-_g)}
ox2 7PMZ ax 3zt ypM2 ax

respectively, where 7, the ratio of specific heat at constant pressure
to specific heat at constant volume, would be considered constant (equal
to approximately 1.4 for air).

Let us now turn our attention to the consideration of a more
approximate, and by the same token more simplified, method of caleculst-
ing the steady three-dimensional flow of a gas at high supersonic speeds.

Approximate method.- It 1s well at the outset of this analysis to
establish, insofar as is practicable, the type of flows to be treated.
In this connection, it is convenient to employ the hypersonic similarity
parameter (i.e., the product of the f£light Mach number and say the thick-
ness ratio of a body) as a measuring stick. In flows characterized by
values of the hypersonic gimilarity parameter small compared to 1, that
1lg, flows in which the body is extremely slender and lies close to the
axis of the Mach cone, there is no apparent reason to believe that the
linear theory will not be as useful an approximste method of calculation
ag at low supersonic speeds. In flows characterized by values of the
Parameter up to about 1, the second-order theory first enunciated by
Busemann (reference 27) for airfoils and more recently generalized to
three~-dimensional flows by Ven Dyke (reference 9) and Moore (reference 28)
should prove a useful approximetion. On the other hand, for flows about
more or less arbitrary shapes, there is apparently no epproximste method
of calculation generally applicable with engineering accuracy at values
of the hypersonic similarity parameter apprecisbly greater than 1.

In the limiting case of indefinitely high free-stream Mach number
(and hence gimilarity perameter) and a ratio of specific heats equal to 1,
we have the Newtonian impact theory (reference 29) and its refined
counterpart, accounting for centrifugal forces in the disturbed flow,
developed first by Busemann (reference 30) and more recently treated
by Ivey, Klunker, and Bowen (reference 31). The impact theory has been
employed with some success by Grimminger, Williems, and Young (refer-
ence 32) and others to predict surface pressures on bodies of revolution
at values of the similarity psrameter appreciably greater than 1, although
it should be remarked in passing that this success is in part, at least,
fortuitous, as perhaps is best evidenced by the fact that the more exact
theory (within the framework of the underlying assumption of M—>w, 7—>1)
of Busemann is considerably less accurate under corresponding circumstances.
As shown in reference 7, nelther the Newtonian impact nor the Busemann
theory apply with good accuracy to airfoils except at values of the simi-
larity parameter quite large compared to 1, corresponding, for example,
in the case of thin airfoils to flight speeds considerably in excess of
the escape speed &t sea level. Perhaps the foremost shortcoming of these



10 NACA TN 2811

theories is, however, that, irrespective of the shape to which they are
applied, they provide no information on the_structure7 of the dlsturbed
flow field which is, of course, of finite extent adjacent to the surface
at flight Mach numbers presently of interest (say Mach numbers less than
the escape Mach number at sea level). Such information is, for example,
important to the determination of the flow about control surfaces and
the like which may be located in this field.

In view of the preceding discussion, it seems clear that in the high-
supersonic-speed flight regime, the need for an approximate method of
analysis lies in the realm of flows characterized by valuee of the hypéer-
sonic similarity paremeter grester than l. An attempt will therefore be
made to obtain & method meeting part of this need, asttention being focused
primarily on tlows characterized by large velues of the similarity param-
eter. To this end, it 1s convenient first to employ equation (14) rewrit-
ten in the form

EEED RG] -
ox M2-1 L 0x \l1 + Dg M2-1 \ 9y (22)

ke’

where

b, = 20z (23)

~ 35/3Ca,

Now consider for the moment a surface streamline alined in the x direc-
tion, and impose the requirement that the x - z plane be tangent to
this streamline and normal to the surface at the point of tangency (the
origin). The x - y plane is then, of course, tahgent to the surface

at thisg point. Observing the last term in the brackets on the right-hand
gide of equation (22), it is noted (see sketch) that

4
H |-

.

o
<

\
A
\
\
#
r
T
’
’

7This consequence is traceable primarily to the assumption of 7y =1
which leads to the well-known result that the disturbed flow field is
confined to an infinitesimel region adjacent to the surface of a body.
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where r 1s the radius of curvature of the line normal to the proJjec-
tlons of streamlines in the x ~ y plane, and passing through the origin.
At the high Mach numbers under consideration, the disturbed flow field is
confined to a region of small extent normal to the surface of a body;
hence it may be expected that r will be primerily a function of body
shape and attitude.® This being the case, it follows then that the

term (1/ #/MB-1) (1/r) will decrease in sbsolute magnitude with increasing
Mach number of the flow about the body. Consider now the term

(08/3x }(1-Dz)/(14Dz)e We note that 35/dx = 1/R where R is the radius
of curvature of the projection of & streamline in the x - z plane and,
by reasoning analogous to that used in considering r, iIs not expected
to vary significently with Mach number in the disturbed flow field., Let
us assume for the moment that the quantity (1-Dgy)/(1+D;) is also rela-
tively independent of Mach number. With this assumption, it is clear
thet equation (22) approaches the equetion for two-dimensional flow as
the free-stream Msch number, and hence the hypersonic similaerity param-
eter of the flow becames large compared to l. The compatibility equations
(equations (17) and (18)) are affected in a similar manner; thus it is
apparent that the flow when viewed in the x - z plane approaches the
two-dimensional type. In this case, however, as shown in reference T,

80 long as the Mach nmumber and ratio of specific heats of the disturbed
fluid are not too close to 1, Dy is small compared to 1, and hence the
flow spproaches the generalized Prandtl-Meyer type (i.e., flow in which
pressure and inclination angle are spproximately constant along curved
first-family Mach lines). Our flow equation may then be written

% v _oUZ 55) (2k)

ox -1 x

where it is required explicitly that

3% 1 oA
ox > JM2-1 | oy (23)

or, in effect,rthat disturbances associated with the divergence of stream-
lines in tangent planes must be of secondary importance compared to tucse
agsociated with the curveture of stresmlines in planes normel to the sur-
face.

From these considerations it appears that the conclusion of refer-
ence 10 that inviscid flow along streamlines downstream of the nose of

8Tt is interesting to note that in ideal gas flows, r becomes just a
function of these varisbles as the value of the hypersonic similarity
parameter becomes large compared to 1 (see work of Oswatitsch, refer-
ence 33, noting that his results cen readily be extended to three-
dimensional ideal gas flows using the characteristics method of this

paper).
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noninclined bodies of revolutlon traveling at high supersonic speeds is
often of the Prandtl-Meyer type (in regions free of shock waves) may
apply also to other steady three-dimensional flows. It is true, too,
that in the latter case, just as in the former case, this conclusion is
consistent with the predictions of the hypersonic similarity lew for
steady flow about slender shapes.

One question remains to be considered, namely, where do the stream-
lines go in the disturbed flow? To clerify this matter, it is conven-
ient to study further the implications of equation (25). For this purpose
we combine equation (25) with the transformestion equation

A:
dy acly 802y
to obtain tﬁe relation
e e o . (26)
o WM2-1| 1y Czy

From this relation we deduce either that to the order of a number (curva-

ture) small compared to g:lﬁf:l 98
M ox
3 O (27)
oCyy OC :
or that
0% M A
—_— >>
ax 5 BCly
and (28)
Bl M oA
Bx 2 Ma_l acZy-

BEquation (27) implies vortical flow, however, which type of flow cannot
be treated by the present analysis since equation (25) is violated.?
Equation (28) is then the requirement consistent with the baslc assumptions

SThis conclusion is particularly evident in the case of pure vortical flow,
or say vortical flow with a superimposed uniform stream directed along
the axis of the vortex, in which cases Op/dx = O, and hence equation @4)
certainly does not follow from equation (22).
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of this asnslysis. Comparing the relations of equation (28) with the
transformation equation

AN__ M <6A+BA>
ax 5 /M?-l acly acay

leads one to the conclusion, however, that

3% oA
o > ox (29)

or, in effect, that surface streamlines can, to the accuracy of this
anslysis, be considered geodesic lines of the surface. With this infor-
tion we are enabled to construct the flow field about & body, having

once determined, for example, the flow in the reglon of the leading edge
(or edges) thereof. This result follows since a geodesic line, and hence
a streamline, on the surface 1s fixed, provided its direction at any
point is given (see, e.g., reference 3h).1° With this knowledge of the
location of surface streamlines, flaw in the planes tangent thereto and
normal to the surface may be calculated approximstely in the relatively
thin region between the surface and bounding shock waves, using the gen-
eralized shock-~expansion method after the manner described in reference T.

A A partial check on these observatlions is afforded by studying the
fiow about a swept airfoil. In this case flow at the surface may be
calculated with good accuracy, using the shock-expansion method in com-
bination with simple-sweep theory. For thin airfoils (on the surface of
which the appropriate geodesics have esgentially the direction of the

free stream) the extended shock-expansion method of this paper reduces to
the slender-airfoil method of reference 7. Thus, in this case, it is
evident from the results of reference 7 that the extended method will
predict surface pressure coefficients in error by less than 10 percent,
providing the component of free-stream Mach number normasl to the leading
edge 1s greater than about 3. It is of interest also to consider a thick
ailrfoil to sscertain the accuracy with which this method applies to flow
with apprecisble curvature. To this end, surface pressure coefficients
and streemlines have been calculeted for a 20-percent-thick biconvex
airfoil (at zero incidence) swept 60° and operating at Mach numbers of 10
and infinity (7 = 1.4). The results of these calculatlons are presented
in figure 1, and it is observed that the pressure distributions determined
with the shock-expansion method for swept airfoils and the extended shock-
expansion method ere in reasonably good agreement at both Mach numbers.

191f & sudden change of surface slope causes an obligue shock wave or a
concentrated Prandtl-Meyer type expansion fan, the streamlines in the
downstream direction are defined on the basis of thelr flow direction
immedlately following the discontinuity in slope.
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The streamlines are also in reasonably good agreement over the forward
portion of the sirfoil, although, as would be expected, somewhat poorer
results are obtained over the afterportion. It is not surprising, in
view of the underlying assumptions of the extended shock-expansion method,
that it is generally more accurate at the highest Mach number.

In the preceding discussion circumstances were deduced under which
steady flow at high supersonic speeds about three~dimensional shapes
could be constructed approximately, using the basic tools of two-
dimensional supersonic flow analysis, namely, the oblique shock equations
and Prandtl-Meyer equations. Several possible exceptions to these cir-
cumstences immediately come to mind. These include conical-type flow
and flow in the region of the tip of a wing, or at the discontinuous
juncture of & wing and body, to mention a few. In such flows equation (25)
may not be satisfied, in which case two-dimenslonsl flow in planes normal
to a surface cannot be expected. e might be reasoned, therefore, that
these flows cannot, in general, be treated by the proposed method. This
observation mey be correct; however, in the one case investigated thus
far in this connection, namely, flow in the region of the nose of non- . —
11fting bodies of revolution (see reference 10), it was found that
although equation (25) is not satisfled, flow along streamlines is never-
theless of approximately the Prandtl-Meyer type. Thus we are led to
expect that perhaps a less restrictive requirement than the satisfying
of equation (25) may be imposed to insure that flow along streamlines is
of this type. Such a requirement is in fact easily obtalned by reconsid-
ering equation (22) in the form .

p__put [® __ M (2 10 (30)
ox JM2-1 ox N M2=1 aCJ_z M oy
thus ylelding
o) M 3% . 10A
x| B |S0s MOy (8

It is evident that equation (31) embraces eguation (25) as & special case
and that Prandtl-Meyer flow obtalns along streamlines 1f

BClZ M By

1l0ne masy note that in some cases of this nature, the flow in osculating
planes of the streamlines may be of the two-dimensional or even the

gimpler Prandtl-Meyer type, although these planes may not be normal to
the surface.
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to the order of a number small compared to JLME:E %é._ This result
M jox

implies that although flow inclination angles are not necessarily con-
stant along C,, lines, pressure is approximately constant (see equa-
tion (1T7)).

It is clear that the increased generelity of the above result has
been obtained at some expense in our knowledge of the streamline flow
pattern. For example, it is not now indicated that (within the fremework
of this analysis) surface streamlines may generally be taken as geo-
desics - additional knowledge of the flow must be had in order to deter-
mine these streamlines. If they are known, however, the calculation of
the whole flow field is materislly facilitated by the above considerstions.
To illustrate, consider a nonlifting body of revolution (see sketch)

Shock .

=

C; lines N ——— Streamlines

= ¢

for which we assume that flow at the vertex is known either from say
reference 8 or reference 10. The meridian curve of the body is broken

up into short segments as shown, and flow is constructed along the first-
family Mach lines emanating from the intersection of these segments. The
requirement to be satisfied is that the pressure change across these lines
be constant along thelr length.12 The construction proceeds then in a
menner analogous to that for the two-dimensional sirfoil discussed in
reference T. ’

Thus far only steady flows have been considered. The problem

naturally arises of extending these considerations to nonsteady flows.
Some aspects of this matter will now be discussed.

Nonsteady Flow

The methods of analysis in this case are entirely analogous to those
employed in the study of steady flow, the singular contrasting feature

121n this mamner small changes in pressure along C, lines can be
.accounted for approximately in the predominasntly conical flow near the
vertex of the body.
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being that derivetives with respect to time in equations (1) through (11)
cannot now be neglected. With this point in mind, only pertinent results
are discussed below. ‘

Characteristics method.~ The competibility equations relating fluid
properties along Mach lines may be written ag_follows:'

op _.—pl” | 2 |1 v [ AL S YL/
Wiz M2l | 91z M ay pU= \ ot / MU \ ot

" (33)
s |t (B [ () ()% (3)]
(34)

The definition of the x - z plane as the osculating plane of a pathline
(streamline in steady flow) remains as before, hence equation (19) still
gpplies in the x - y plane in the region of the origin. The rotation
of the osculeting plane and variation of the prineipal curvature of a
pathline with motion along it are now, however, obtailned with the aid of
the relations

%'xa'%';'E%rﬁ% %) %é dx) (35)
and
@ _ _ 1 a §E> ¥ .34, _B> s (36)
dx2 pUZ dx \ oz % T Uax | pa
where
16 o)

These equations in combination with the energy and state equations sare
employed in the same menner as in the case of steady flow to construct a
flow field, proceeding from an initisl value surface. It is clear, how-
ever, that because of the unsteady nature of the flow, this surface is
not necessarily fixed in space, nor are fluid properties necessarily
constant on 1t. Thus, in order to construct the flow, it wili in genersal,
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be necegsery to start new osculating planes from this surface at short
intervaels of time, each plene being attached to a particular element of
fluid as it moves through the fleld. By way of comparison, then, we
recall that in going from steady two-dimensional to three-dimensional
flow with the characteristics method, it was necessary to construct the
flow in a family of surfaces (located adjacently in say the spanwise
direction) rather than just a single surface. Anslogously, in going from
three-dimensional steady to three-dimensional nonsteady flow, it is neces-
saxry to construct the flow in a family of spaces located adjacently in the
"time" direction, rather than in just one space. Quite obviously such a
geries of calculations poses so formidable and time consuming & problem
ag to be questionably feasible at present; hence they willl be comsidered
in no greater detail here. Rather, let us turn our attention to the
approximate method of calculating nonsteady flows.

Approximate method.- As in the case of the correspohding steady-flow
analysis, it is convenient to consider the expression for pressure gra-
dient along a pathline. Thus we have

22| 23] B =84 E®-20)

M2
(38)

where now the x - z planes are taken normal to the surface swept out by
elements of fluid moving along the body. Upon inspection of this relation
and the compatibility equations, it becomes clear that the critical
requirement for two-dimensional flow of the generalized Prandtl-Meyer type
in these planes is, in addition to the one previously derived from steady
flow considerstions, that

g« |2
or
118 | |88 (39)
MO | ox, dx
where
M°=EUS_ %o = 8ot

ao belng the veloclity of sound in the undisturbed stream. Now so long
as the Mach nmumber of the undisturbed stresm and the local Mach numbers
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are large compared to 1, M° is large compared to 1 since the speed of
the undisturbed stream and the speed of the local flow cannot differ
greatly. Thus, with this restriction, the requirement expressed by :
equation (39) is simply that the induced curvature of the flow |03/dx¢|,
assoclated with the nonsteady motions of the fluid, canmnot exceed in
order of magnitude the total curvature [d8/dx| of the flow. Provided
this is the case, and equation (25) is satisfied, equation (38) reduces,
of course, to

One observes that thle result is not applicable to as wide a class of
shapes ag that for steady fluw, since the local Mach number of the dis-
turbed flow is now required to be everywhere large compared to 1,18

This additional requirement manifests itself, since otherwise, nonsteady
disturbances created an apprecisble distance upstream and/or downstream
of a particle could significantly influence its behavior in the disturbed
flow field (see sketch, noting that in case of thick body, particle b

is influenced by disturbances originating in particles a and c).

Wave fronts of

luid particles dIsturbances
. ’ generated in parlticles

a and ¢

M2l ‘T{)i{i ,qu_ly

M>>!
Shock wave Py

Thus equation (40) applies only in disturbed flow flelds about thin or
slender shapes (i.e., shapes producing flow deflectlon angles small com-
pared to 1). In such cases, pathlines in the surfaces swept out by
elements of fluld adjacent to the shapes are approximated by geodesics
or, even simpler, lines of curvature of these surfaces. It is not to be
implied, of course, that pathlines must always be such curves Iin order
for fluld properties to behave as in Prandtl-Meyer flow. In fact, Jjust
as in the case of steady flow, if equation (31) rather than equation (25)
is satisfled, pathlines are not necessarily geodesics (or lines of curva-
ture) although equation (39) and hence equation (40) hold along these lines. _

18The net simplification of requiring only that the hypersonic similerity
parameter of the flow be large compared .to 1, is, in general, that flow
in osculasting planes may be treated as nonsteady, two-dimensional.
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One notes that within the framework of this epproximate analysis,
the calculation of nonsteady flows at least at the surface of slender
bodies traveling at high supersonic speeds should not prove unduly 4iffi-
cult. To illustrate, consider an oscillating airfoll as shown in the

sketch:
Airfoil at time ’2 X
X

\y

Shock wave

M>>/

Pathline of particle striking
leading edge at time 1

Direction of rota?ion
of airfoil

<L
~ J:Flr;\
~

S~
S

Airfoil at time Iy

The pressure at any polnt along the pathline shown is readily deduced by
simply integrating equation (40) along this line from the leading edge

of the airfoil to the point in question. The whole flow field as a func-
tion of time may be calculated by employing the generalized shock-
expansion method for steady flows (see reference T) in a series of planes
located small distances apasrt in time. This example serves to emphasize
that the time history of fluid elements must be known, at least to the
extent of fixing their initial flow direction and entropy. It is also
evident that again, as in the case of steady flow, the general results

of the analysis are consistent with the predictions of the hypersonic
similagity law for nonsteady flows about slender related shapes (refer-
ence 5).

CONCLUDING REMARKS

A method of characteristics for solving steady three-dimensional
supersonic flow problems has been considered. It was found that compat-
ibility equations relating fluid properties along characteristic lines
could be obtained in a simple form by employing pressure and flow incli-
nation angles as dependent variables. No significant restrictions were
imposed on either the equation of state obeyed by the fluid, or the rela=-
tions defining its specific heats. These features of generality were
retained for the specific purpose of enabling more accurate application
of the method to the calculation of flow fields about missiles traveling
at high supersonic alrspeeds. Such application requires, of course, a
predetermined knowledge of fluid properties along some surface in the
disturbed flow. Extension of the method to treat nonsteady flows was
congidered briefly.

It was also undertaken to obtain an approximate method for calculat-
ing flows about bodies traveling at high supersonic speeds. It was found
that when the flight Mech number is sufficiently large compared to 1, flow
in the osculating planes of streamlines in regions free of shock waves
may frequently be of the generalized Prandtl-Meyer type =- surface
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gtreamlines in thls event mey be taken as geodesics. In the case of
slender shapes, these results apply to nonsteady as well as steady flows,
provided the induced curvature of streemlines does not exceed the total
curveture in order of magnitude. It is concluded from these and other
congiderations that two-dimensional-flow equations may be applicable to
8 relatively wide class of flows, and hence configurations, st high
supersonic speeds.

Ames Aeronsutical Laboratory
Netional Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 15, 1952
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APPENDIX

SYMBOLS

local speed of sound
chord of airfoil (measured normal to leading edge)

characteristic coordinates in x - z plane (Ciz; is positively
inclined with respect to x)

pressure coefficient <_P;§0_>
poUo=/2

Mach mmber (ratio of local velocity to local speed of sound)

Mach number (ratio of local velocity to speed of sound in the
undisturbed stream)

static pressure
entropy
time

components of fluld velocity along the x, j;and Z axes, res-
pectively

rectangular coordinates

‘ratlo of specific heat at constant pressure to specific heat

at constant volume

angle between x axis and tangent to projection of streamline
(or pathline) in x - z plane

angle between x saxis and tangent té projection of streamline
(or pathline) in x - y plane
density

Subscript

free-stream conditions
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